纯水设备

南京皙泉服务热线:13013786468,专业研发制造销售南京纯水设备,纯化水设备,医用纯化水设备,实验室纯水设备,反渗透设备,超滤设备,纯水设备,超纯水设备,软化水设备,去离子水设备,高纯水设备,EDI设备,河水净化设备,脱盐水设备,制药纯化水设备,实验室超纯水机,工业纯水设备及水处理设备等。

纯水设备

纯化水设备

南京皙泉服务热线:13013786468,专业研发制造销售南京纯水设备,纯化水设备,医用纯化水设备,实验室纯水设备,反渗透设备,超滤设备,纯水设备,超纯水设备,软化水设备,去离子水设备,高纯水设备,EDI设备,河水净化设备,脱盐水设备,制药纯化水设备,实验室超纯水机,工业纯水设备及水处理设备等。

纯化水设备

超纯水设备

南京皙泉服务热线:13013786468,专业研发制造销售南京纯水设备,纯化水设备,医用纯化水设备,实验室纯水设备,反渗透设备,超滤设备,纯水设备,超纯水设备,软化水设备,去离子水设备,高纯水设备,EDI设备,河水净化设备,脱盐水设备,制药纯化水设备,实验室超纯水机,工业纯水设备及水处理设备等。海湾等全国各城市,欢迎电话咨询:13013786468。

超纯水设备

反渗透设备

南京皙泉服务热线:13013786468,专业研发制造销售南京纯水设备,纯化水设备,医用纯化水设备,实验室纯水设备,反渗透设备,超滤设备,纯水设备,超纯水设备,软化水设备,去离子水设备,高纯水设备,EDI设备,河水净化设备,脱盐水设备,制药纯化水设备,实验室超纯水机,工业纯水设备及水处理设备等。

反渗透设备

我国水体重金属污染成为迫在眉睫需要解决的事情

2019/12/19 8:54:02

南京纯水设备行业新闻】随着我国经济的快速增长和人民生活水平的日益提高,由此发生的环境污染问题也日益突出,其中水体重金属污染由于其具有危害大、分布广、继续长等特点而备受社会各界的广泛关注。重金属污染物通过干、湿沉降等各种途径随着生活污水和工业废水等进入水体,不只对水生生物造成极大影响,还严重威胁人类的身体健康。综述了水体重金属的污染现状,以及水体重金属对水生生物的生态毒性效应及其机制,并展望了重金属对水生生物生态毒性效应的未来研究重点和方向,为重金属对水生生物的生态毒性效应进一步研究和水体重金属污染的环境治理提供参考,同时可为重金属的水质基准和风险评估研究提供重要理论依据。

关键词:重金属;水生生物;毒性效应;水质基准;风险评估

0引 言

重金属由于其持久性、生物毒性、不可降解性和能进入食物链的特点,无锡纯水设备甚至在一定条件下还能与某些有机物发生反应从而转化成毒性更大的金属-有机复合污染物[1]正成为最严重的环境问题之一[2-3]水生生物如动物、植物和微生物等对重金属有一定的积累和浓缩作用[4]但当重金属的浓度和毒性逾越水生生物所能承受的能力时,就会对它相关指标甚至生命活动等方面发生严重的毒性效应,同时会造成遗传突变或变异,进而发生物种多样性及生存方面的改变;由于重金属可以通过食物链最终传送给人等高级生物,对人体健康也发生严重威胁,如重金属进入人体后不易被排出,并不断积累,一旦逾越人体的生理负荷时,就会引起生理结构病变,并导致急、慢性或长期的危害,如ZnCdCH3HgSeNi等具有致畸性。高浓度重金属环境下,摄入过量的重金属将会引起中毒,甚至可能发生严重后果[5]

水体重金属污染是指含有重金属离子的污染物进入水体造成的污染[6]主要包括PbCdCrHgAsMn等毒性较强的重金属,同时还包括CuCoZnSeNi等一般毒性的重金属[7]水体重金属的来源包括工业来源、农业来源和乡村化来源,如来自化工、电镀、采矿及金属冶炼等行业,煤炭、石油等化石燃料的燃烧,其废气中的大量重金属进入大气后再通过降雨的形式进入水体;含重金属CuAsHgPb等元素的化肥、农药通过农业的使用进入土壤,进而经过雨水的淋溶等方式进入水体;乡村化进程的加快,使得垃圾焚烧、汽车尾气排放发生的重金属也能通过干湿沉降等途径进入水体[8]

由于水体重金属对水生生物及人类的危害极大,众多专家学者已经开展了重金属对水生生物的生态毒性方面的研究,尤其是HgCdPbCrAs等非必需元素对生物造成的急性、亚急性以及慢性中毒等毒性效应研究[910]此外,也有研究人员做了重金属对人体和动物毒性或致癌方面的研究。结果标明:通过重金属FeCuCdCrHgNiPb等的抚慰作用发生的活性氧,会对机体发生一系列毒性效应,如脂质过氧化、巯基蛋白消耗,与核蛋白、DNA 反应,对生物大分子物质造成损伤[11]基于此,本文综述了水体重金属的污染现状,以及水体重金属对水生生物的生态毒性效应及其机制,常州纯水设备并展望了重金属对水生生物生态毒性效应的未来研究重点和方向,可为重金属的水质基准和风险评估研究提供重要理论依据。

1水体重金属污染现状

过去的几十年里,由于工业化的迅速推进,含有重金属的工业废水、生活污水、农业杀虫剂等被排放到世界河流和湖泊中,进而在水生生物和堆积物中积累[1213]国内外对水体中的重金属污染状况均有很多报道,国局部地区水体受重金属污染的情况比较严重,水体底泥中重金属污染率达到80.1%以上,而水体中99%重金属以各种形态存储在底质沉积物中,且近年来多种重金属污染呈上升趋势[14]谢文平等[15]研究我国南部水体重金属污染情况时,发现贵州省地表水存在严重的重金属CdPb污染现象;珠三角区域水体重金属CrPb和Hg分别超标22.2%11.1%和5.6%张莉等[16]研究了华东地区如福建九龙江流域出现As超标情况,超标率达到14.81%

国外对河流水体重金属污染研究较早,多瑙河、莱茵河等已成为水体重金属污染的重点研究对象[17,18]塔斯克基湖[19]埃布罗河三角洲[20]和黑海[21]都检测出多种重金属存在Rahman等[22]研究标明,孟加拉国Dhaka加工区内及Bangshi河的水体中重金属PbCdCuZnMnAsNi和Cr含量很高,远超过WHO及USEPA 规范。可见,目前水体重金属污染问题已成为一个全球性的环境问题。

2水体重金属的来源及危害

2.1水体重金属的来源

自然活动来源和人为活动来源是水体重金属的两大主要来源。其中,自然活动来源包括海洋火山喷发造成的重金属泄漏,地壳运动、岩石风化、土壤侵蚀、干湿沉降等方式也是水体重金属的重要来源途径;人为活动来源主要包括矿山采矿、油田开采、电镀冶金、废旧电器以及化工厂废水的排放,农业上农药化肥等的使用,并通过雨水冲刷等方式使得土壤里的重金属流失,进而直接或间接排放到水体中,都会对水体环境造成非常严重的重金属污染[23]水体重金属具有污染来源广泛、停留时间漫长,且具有累积和富集浓缩特性,容易沿食物链传送,污染后不易被发觉及难以恢复等特点。

2.2水体重金属的危害

重金属是一种原子密度>5g/cm3金属和类金属。一些有毒重金属如NiAsCrZnCuCdCoPb等,会对环境发生严重危害,Cd2+Pb2+Hg2+Ag+和As3+等离子形式和生物组织器官发生作用,形成相应的有毒化合物,随同着重金属生物富集和浓度的升高,所表现出来的毒性特征也不同,配体和氧化态对重金属的生物利用性起着至关重要的作用。如果重金属的累积浓度或效应达到一定限值时,以至于引起细胞新陈代谢的破坏,此时就成为有毒重金属[24]金属的毒性效应主要引起大脑和神经系统功能损失,损害血液含量以及肝、脾、肾脏等器官,从而造成身体衰弱、记忆力减退、皮肤过敏、高血压等症状[25]基于此,世界各地的卫生组织正在抓紧研究重金属的毒性机理,若干管理机构也已通过了含重金属废水排放的规范限值。研究人员也大力开展重金属废水处置新技术的研发,以期达到尽快减少重金属对环境危害的目的[26]

3重金属对水生生物的毒性效应及机制

3.1重金属对水生生物的毒性效应

重金属主要通过以下3种途径进入水生动物体内:1水生动物利用鳃等器官将溶解在水中的重金属离子吸收至体内,然后将重金属蓄积在皮肤外表细胞或经过血液输送至体内的各个器官或组织;2水生动物通过摄取食物等方式,将重金属通过消化道吸收,进而进入体内;3通过皮下层将重金属吸收,再通过重金属与体表的渗透交换作用进入体内[51]

3.1.1重金属的生物累积作用

水体中的重金属一旦进入生物体内,不易被代谢、分解、排除体外,非常容易在动物肝肾等器官内富集。Olivar等[52]证实,通过与机体内金属结合蛋白如金属硫蛋白相结合,重金属在生物体内富集的主要机制。Rainbow等[53]研究发现,生物体摄入重金属的过程无需消耗能量,且不易被排出体外,进而呈现出毒性的累积效应。秦华伟等[54]研究了6种重金属对3种海水养殖生物的急性毒性效应时发现,经过96h处置后,3种生物体内重金属含量明显增加。孙妮等[55]研究湛江港海区堆积物和海洋生物中重金属的富集特征时发现,堆积物中的重金属除Cd外,其他含量均高于其在海洋生物体中的含量;湛江港流域的生物体内重金属CuZnCd存在严重的富集累积情况;软体类和甲壳类对重金属Hg和Pb富集能力相当,而软体类从堆积物中富集重金属Sn和Cd能力强于甲壳类,富集重金属Cu能力弱于甲壳类。Rzymski等[56]研究双壳类对不同重金属富集情况标明,双壳类对重金属Cu和Cd富集能力非常高。Topcuowidth=6,height=16,dpi=110lu等[21]研究了重金属在土耳其黑海水生生物体内的含量,结果标明,PbCd和Cr等在软体动物和贝类体内富集量最高,Fe和Zn富集量最少。

3.1.2生物早期发育毒性

鱼类的胚胎期和仔鱼期早期发育阶段,很容易被重金属伤害,重金属一旦进入幼体,可与生物体内的核酸、酶、维生素、激素等物质发生反应,改变其化学结构和生物活性,进而对遗传发育、内分泌以及中枢神经等多个系统的功能发生损害、引起病变甚至死亡等[57-59]郭勇勇等[60]研究了三峡库区水样中重金属对斑马鱼(Brachydaniorerio胚胎发育的毒性,结果标明,经7d流露后,虽然所有斑马鱼胚胎的孵化率、相对成活率和畸形率并无明显差异,南通纯水设备但幼鱼体内生殖相关基因、神经发育相关基因均显著下降。张亚辉等[61]采用斑马鱼胚胎早期发育技术测定Cu和Cd2种重金属对胚胎发育的毒性效应,分别以24h和72h时达到致死和胚胎孵化抑制为终点时发现,重金属Cu和Cd对斑马鱼胚胎具有明显的毒性作用。García等[62]研究发现,海洋多毛纲动物沙蚕(Nereisuccinea胚胎和幼虫对Ag更敏感,流露于AgNO3中显著增加了胚胎的致死率和畸变率。Munlei等[63]研究发现,水生蜗牛(Fruticicolida流露于重金属CoCuPbNi中28d后,抑制了其早期胚胎生长,56d后抑制了其产卵量。除此之外,CuPb和Zn等重金属都能够显著影响生物早期胚胎的发育和孵化,进而导致胚胎发育延迟的后果[64]

3.1.3生物免疫毒性

通常认为,低剂量浓度的重金属或短期的流露具有免疫抚慰作用,促使生物体血细胞的吞噬活性增强[65,66]但是高剂量浓度重金属或临时流露能够显著干扰生物细胞的吞噬能力,主要是因为在此过程中重金属能够与细胞膜结合,从而改变细胞膜的流动性和细胞膜上离子泵的通透性,细胞膜稳定性下降,造成吞噬活性降低[67,68]Paul等[69]研究Pb对淡水鱼的免疫毒性作用时发现,Pb干扰了肠巨噬细胞的噬菌作用和细胞粘着力,同时血清中的肿瘤坏死因子含量也明显下降。Qin等[70]报道称重金属Cd流露影响了溪蟹(Potaa体内的酶活性。Vijayavel等[71]标明,Ni流露促使青蟹血淋巴内超氧阴离子的生成及吞噬作用的增强,但是又显著抑制酚氧化酶的活性。Chandurvelan等[72]研究标明,重金属Cd流露能增加河蚌体内起吞噬作用的嗜碱粒细胞和嗜酸粒细胞含量,并使细胞内DNA 发生显著的损伤。

3.1.4基因突变和变异

重金属一旦进入生物体内后会发生富集浓缩,当重金属剂量浓度逾越一定量或临时流露后会对生物体组织器官造成损伤,并诱导大量的活性氧(ROS及亲电子代谢产物发生,进而与DNA 分子结合,使得生物体内的细胞受到外界环境的氧化攻击,导致生物体内脂质发生一系列的反应,如过氧化反应、遗传物质改变、碱基核糖基氧化,进而造成某些细胞死亡或癌变[73-75]Hix等[76]研究结果标明,DNA 被铁离子诱导以后发生的大量甲基自由基攻击时,会引起DNA 高度甲基化。Pfohl-Leszkowicz等[77]研究也表明,重金属离子能够显著抑制甲基转移酶的活性,重金属铅、铜以及锌离子等均能抑制5-甲基转移酶的活性。Rossiello等[78]研究也表明了Pb能引起DNA 低度甲基化。唐建勋等[79]研究重金属CuPb单因子及联合毒性对泥鳅(Misgurnuanguillicaudatu卵细胞DNA 损伤效应时发现,均造成泥鳅卵细胞DNA 损伤,具有基因毒性。同时,行文珍[80]研究标明,Pb和Cr对泥鳅具有不同水平的遗传毒性效应,且毒性效应在一定条件下随着处置浓度的增大和处理时间的延长而增强,达到一定浓度和时间后毒性效应则会被抑制。

3.1.5内分泌干扰毒性

重金属流露导致高血压和糖尿病等代谢疾病的机制之一可能是重金属、有机氯农药和多氯联苯都是典型的内分泌干扰物,进入生物体内就可以对激素合成和分泌发生干扰,并形成内分泌干扰毒性,如重金属CdMnCr等元素会增加代谢紊乱的发病率,金属类内分泌干扰物流露后可增加氧化应激并诱导线粒体功能紊乱的风险[81]成年的大西洋石首鱼(Micropogoniaundulatu流露于亚致死浓度的PbCd等重金属后造成血液类固醇浓度、卵巢类固醇分泌活动和卵巢发育显著上升或下降[82]木伟娜[83]研究标明,Cd流露对鲤鱼(Cyprinucarpio血浆中甲状腺激素发生较大的干扰效应。罗永巨[84]研究Cd对吉富罗非鱼(Oreoommossambcu毒性效应及繁殖力影响过程中发现,Cd能够提升血清中雌二醇的含量,但对睾丸酮含量影响不明显。基因水平,Cd能够提高卵巢中雌激素受体(estrogenreceptor,ER表达,但Cd流露可以抑制卵黄蛋白原(vitellogenin,VTG生成。精巢中,Cd通过提高糖皮质激素受体(glucocorticoidreceptor,GR表达抑制精细胞和精子的发育。另外,采用经过60d不同Cd流露组的罗非鱼配组繁殖后代,研究Cd对罗非鱼相对产卵量、出苗数、孵化率以及崎形率的影响。Li等[85]研究发现,鲦鱼(minnow幼体流露于重金属Hg4d后,体内促肾上腺皮质激素释放激素,甲状腺球蛋白、甲状腺受体α和β基因表达被显著诱导,甲状腺素T3和T4含量增加。

3.2重金属对水生生物的毒性效应机制

3.2.1重金属对水生动物的毒性效应机制

一些水生动物临时生活在有重金属存在环境中,可调整自身的生理生化指标,以提高对重金属的应激性和耐受性。例如,鱼类临时生活在有重金属污染的水体中,其体内会产生相应的蛋白质和酶来抵抗体内的重金属离子,如热激蛋白(heatshockprotein,HSP金属硫蛋白(metallothionein,MT转铁蛋白(transferrinTF谷胱甘肽转移酶(glutathiontransferase,GT过氧化氢酶(catalase,CA T超氧化物歧化酶(superoxiddismutase,SOD等,从而减轻重金属对细胞的损伤[86]重金属如CdHg等进入生物体内,会与体内其他物质发生竞争作用,此时,MT巯基能与有害重金属发生结合反应,从而发挥解毒作用,进而将重金属等有害物质排出体外[87]SOD能够歧化超氧阴离子自由基产生H2O2从而把对有机体有害的自由基清除,CA T可将H2O2催化生成无害的H2O和O2同时还与SODPOD发生协同作用,清除体内多余的自由基和过氧化物。Xu等[88]发现,MT表达量在被重金属Cd胁迫诱导后会升高,使得羟基和过氧化物得以被清除,促使机体发生抵御氧化的应激反应。Chen等[89]研究了大黄鱼肝脏中转铁蛋白在重金属Cd离子流露下的含量变化情况时,发现其血清中的铁离子经重金属Cd离子处置后迅速升高,24h达到最大值,后缓慢下降并达到初始正常值。Hansen等[90]将鳟(Salmoplaytcephalu流露于含Cd和Zn水体15d期间,发现鳃中Cd和Zn有显著吸收,且Cd水平与SOD转录的水平存在显著的相关性。此外,水生动物在受到重金属污染时会分泌丰富的黏液,一定水平上可以提高对重金属的耐受性[91]

3.2.2重金属对水生植物的毒性效应机制

水生植物的重金属毒性效应主要表示在破坏细胞膜结构、抑制呼吸作用、光合作用、生长发育过程,以及对遗传物质的毒害等生理生化过程。重金属进入植物体内会改变抗氧化酶活性、诱发ROS发生、引起氧化损伤效应,同时还会通过干扰一些细胞内的转录因子活性、诱发细胞凋亡等,干扰植物体内正常的生理、生化反应[11,92]付贵权等[93]研究Cu胁迫对半叶马尾藻(Sargassumhemiphyllum生长及生理生化特性的影响时发现,适当质量浓度的Cu胁迫(≤0.05mg/L对半叶马尾藻生长和生理生化指标有正面效应,而过高质量浓度Cu胁迫(0.05mg/L对藻体生长和抗逆能力有一定的负面影响。简敏菲等[94]研究CdPb胁迫下湿地植物丁香蓼(Ludwigiaprostrata生理生化特征时发现,丁香蓼生长受到显著抑制,叶绿素ab及叶绿素a+b含量随重金属浓度升高呈下降趋势,对丁香蓼体内的超氧化物歧化酶活性的影响表示出不同的趋势。也有研究表明,高浓度Cu处置下,水芹(Oenanthjavanica株高和根数都显著减少,鲜重生物量也明显降低,同时叶绿素总量、叶绿素a和可溶性蛋白总体均呈下降趋势[95]另外,植物细胞的超微结构及细胞膜的通透性,生长发育、水分及营养元素的吸收代谢、光合作用、呼吸作用、体内的抗氧化酶活性、体内的遗传物质等方面也受到重金属的严重影响[96]

3.2.3重金属对水生微生物的毒性效应机制

细菌和真菌是水生态系统中常见的微生物,生物的分解者和微型消费者,同时也是初级生产者,例如自养菌类光合细菌等。微生物通过细胞次生代谢产物如有机酸、糖蛋白、多糖等的分泌来增强细胞对重金属胁迫等环境的适宜性,这些胞外代谢物靠和重金属离子结合来提高细胞的抗逆性,但是重金属离子经常会对生物体发生氧化损伤作用,进而诱导发生过量的氧自由基,造成生物体的细胞膜被破坏,同时破坏生物体正常的呼吸代谢途径[97]张博文等[97]研究了滏阳河河流水体中重金属对青海弧菌Q67毒性,重金属离子抑制了还原型黄素单核苷酸与氧化型黄素单核苷酸活性,使得它之间的转化不能正常进行。许飘[98]用白腐真菌吸附重金属结果发现,高浓度Cd胁迫可显著抑制黄孢原毛平革菌的生长,并导致菌丝体形态变化以及木质素降解酶系(LiP和MnP活性降低。周上洋等[99]应用基因重组发光菌E.coliHB101pUCD607研究了Zn2+Cu2+Hg+单一毒性和二元混合体系的联合毒性,实验结果标明,单一重金属离子对基因重组发光菌的毒性顺序为Hg+>Zn2+>Cu2+

4结论与展望

水体重金属污染已经成为一个全球性的问题,重金属一旦进入水体将不能被去除,只能通过一系列的物理化学反应使重金属发生形态上的迁移、转化,最终在水体各组分之间形成一个复杂的体系。目前,世界各国的专家学者对重金属的毒性效应、机制等方面已经做了很多研究,后续的研究工作中,提出以下几点建议:

1由于一些新兴污染物如抗生素、微塑料等进入水体,联合水体颗粒物、溶解性有机物 dissolvorganmaterial,DOM等与重金属形成一个更为复杂的体系,水环境因子对金属生物有效性的影响和机制研究应成为研究重点。

2一些重金属可能是微量级的但重金属在迁移、转化过程中是否发生毒性效应的改变应该被持续追踪,并建立相应的模型,以监督、预测、评估重金属的毒性变化情况。

产品分类

Online Services

 Services  after-sales