纯水设备

南京皙泉服务热线:13013786468,专业研发制造销售南京纯水设备,纯化水设备,医用纯化水设备,实验室纯水设备,反渗透设备,超滤设备,纯水设备,超纯水设备,软化水设备,去离子水设备,高纯水设备,EDI设备,河水净化设备,脱盐水设备,制药纯化水设备,实验室超纯水机,工业纯水设备及水处理设备等。

纯水设备

纯化水设备

南京皙泉服务热线:13013786468,专业研发制造销售南京纯水设备,纯化水设备,医用纯化水设备,实验室纯水设备,反渗透设备,超滤设备,纯水设备,超纯水设备,软化水设备,去离子水设备,高纯水设备,EDI设备,河水净化设备,脱盐水设备,制药纯化水设备,实验室超纯水机,工业纯水设备及水处理设备等。

纯化水设备

超纯水设备

南京皙泉服务热线:13013786468,专业研发制造销售南京纯水设备,纯化水设备,医用纯化水设备,实验室纯水设备,反渗透设备,超滤设备,纯水设备,超纯水设备,软化水设备,去离子水设备,高纯水设备,EDI设备,河水净化设备,脱盐水设备,制药纯化水设备,实验室超纯水机,工业纯水设备及水处理设备等。海湾等全国各城市,欢迎电话咨询:13013786468。

超纯水设备

反渗透设备

南京皙泉服务热线:13013786468,专业研发制造销售南京纯水设备,纯化水设备,医用纯化水设备,实验室纯水设备,反渗透设备,超滤设备,纯水设备,超纯水设备,软化水设备,去离子水设备,高纯水设备,EDI设备,河水净化设备,脱盐水设备,制药纯化水设备,实验室超纯水机,工业纯水设备及水处理设备等。

反渗透设备

热电厂脱硫废水处理应对零排放的高标准

2019/8/26 16:29:44

南京纯水设备行业新闻】

针对国内愈益严格的环保政策及逐渐深入的零排放形势,结合脱硫废水的水质和主要问题,综述了热电厂脱硫废水的激进处置工艺和零排放工艺的研究与应用现状。脱硫废水具有高悬浮物、高盐、水质复杂、动摇大等特征,激进处置工艺主要存在效果不稳定、产水不达标、结垢腐蚀严重和浓盐水排放问题。简述了脱硫废水激进处置工艺及其改进工艺的研究与应用现状,指出其在零排放形势下已满意足处理要求,而逐渐转换为预处理工艺。重点论述了零排放组合工艺的预处理、重金属去除、浓缩减量和盐结晶固化单元工艺的研究与进展,总结了目前脱硫废水零排放技术的发展进程,并分析总结了若干典型应用案例,指出“膜分离+蒸发结晶”组合工艺将会成为深度处置与零排放的关键工艺。无锡纯水设备零排放是未来热电厂脱硫废水处置的主要途径,亟需加快新材料、新装备、新工艺等在脱硫废水零排放的工业化应用进程。

关键词:脱硫废水;零排放;膜分离技术;蒸发结晶;

预处置火力发电是国最重要的电力组成,尽管近10年来火电占比逐渐降低,但火电发电量和火电设备装机量依然在逐年增加[图1a][1-2]。随着烟气排放管理与控制日益严格,烟气脱硫是火电厂不可或缺的过程。烟气脱硫技术主要包括前端脱硫、干法、半干法和湿法脱硫,其中湿法脱硫具有反应快、效率高等优点,全球应用占比达85%[2]。湿法脱硫采用液态吸收剂吸收SO2和其它污染组分,主要包括钠碱法、氨法、氧化镁法、有机胺法、石灰石-石膏法等,其中石灰石-石膏法由于操作简单、效率高、技术幼稚、稳定性好而成为最主流的脱硫技术,约90%发达国家的火电厂采用该技术。国火电厂主要采用石灰石-石膏法脱硫,脱硫石膏产量逐年增加[图1b][3],尽管湿法脱硫产生的脱硫废水量少,但污染负荷高、处置难度大,已成为电厂亟待解决的难题之一。

脱硫废水呈弱酸性且悬浮物和盐含量极高,并含有多种重金属,电厂水处理中的难点与重点。脱硫废水处置经历了从重力沉降到三联箱工艺的发展,三联箱工艺结合激进混凝、化学沉淀、廓清等单元,可去除悬浮物、重金属和部分COD目前主流的脱硫废水处置工艺。随着水质排放规范的提高、工业用水取水指标的严格限制和工业废水回用的强烈需求,火电厂脱硫废水处置从悬浮物、COD去除逐渐上升到重金属去除和脱盐,现有三联箱工艺不能满足排放要求[4],新型处置工艺或组合工艺的开发成为解决电厂脱硫废水处置的重要内容。废水零排放是近年来工业废水特别是高浓高盐废水处理的新方向,全球范围内得到广泛的研究和应用。针对脱硫废水水量较少,但污染负荷高、处置难度大的特点,近年来脱硫废水零排放工艺的研究和应用成为火电厂水处理技术的重点内容,也逐渐实现了从小试到中试及工程应用的发展。常州纯水设备保守的直接利用余热蒸发的战略存在效率低、占地大、结垢、腐蚀严重等问题,新型零排放工艺研发与应用成为今后火电厂脱硫废水处置的主要内容。因此,本论文从脱硫废水的发生及主要问题动身,介绍了激进脱硫废水的处置工艺,重点从预处理工艺、重金属去除、浓缩减量、盐结晶固化4个方面综述了零排放形势下脱硫废水处置的应用和研究进展,以期为脱硫废水的零排放处置提供参考。

1脱硫废水的发生及主要问题

石灰石-石膏湿法脱硫采用石灰乳循环吸收烟气中的SO2吸收过程生成石膏,为保证石膏品质,一般采用Cl浓度进行控制(控制限值一般为20000mg/L定期排出一定量的脱硫废水并补充新鲜吸收液。随着脱硫吸收液的循环浓缩,脱硫废水主要特征如表1所示[5]:1悬浮物含量高(SS:5.080.7g/L其主要组成为微米级的硫酸钙和亚硫酸钙粒子,沉降性能差(图2;2盐含量 高(TDS:18.1121.5g/L主要离子为Na+Ca2+Mg2+ClFSO24和SO23等,属于高盐废水,虽然排放规范(火电厂石灰石-石膏湿法脱硫废水水质控制指标DL/T997-2006对惯例离子暂时未做限制;3多种重金属超标;4还原性含硫物质是COD重要组成;5受烟气成分变化、吸收液用水的水质差别、脱硫系统管理难控制等限制,脱硫废水的水质和水量动摇显著,对处理工艺的适应性提出了更高要求[6-7]。

脱硫废水处置过程的主要难点在于:1采用激进方法难以实现悬浮物的高效去除,固液分离时间长;2设备和管路的结垢腐蚀严重;3化学污泥具有毒性和高污染性;4水质水量变化对处置工艺冲击大。因此,脱硫废水的处置一直是电厂亟需解决的关键问题,特别是废水排放规范逐渐严格的条件下,保守的三联箱工艺已经无法满足水处理的要求。

2脱硫废水激进处置工艺及其进展

激进脱硫废水处置技术包括重力沉降、化学沉淀、微生物法和湿地等技术,其中化学沉淀应用最广泛。脱硫废水首先需要解决的问题是去除悬浮物和重金属。重力沉降法在初期得到应用,但因其沉降速率慢、占地大、溶解性污染物去除效果低,逐渐被其他工艺替代。化学沉淀法通过投加化学试剂与重金属、F和S等形成盐沉淀,目前主要的重金属控制战略。

三联箱工艺是国脱硫废水处置应用最为广泛的技术,将混凝与化学沉淀工艺结合实现悬浮物和重金属的去除。但该工艺投药量大、固液分离速率慢、分离效果差、污泥量大,且由于脱硫废水的水质动摇大,导致经常出现出水不达标和系统解体[8]。同时,三联箱工艺处置过程发生的高盐废水仍然无法达标排放,南通纯水设备成为火电厂亟需解决的关键问题[9-10]。因此,三联箱工艺的改进工艺和方法的开发得到大量研究,首先是反应器的设计与优化。Tian等[11]采用二联箱代替激进三联箱,利用计算流体力学模拟优化反应器结构,并采用固态药剂的投加方式,结合廓清与过滤,去除悬浮物和重金属。新型药剂研发与应用也是简化三联箱工艺、降低运行本钱的重要手段。华能杨柳青电厂改造后采用干粉投加的方式仅通过一种高效无机混凝剂就可实现脱硫废水的达标排放[12],大唐某电厂采用一体化的脱硫废水处置设备,通过投加一种亲水聚合物药剂实现脱硫废水的达标排放[13]。向朝虎[14]采用一种新型高效吸附剂简化三联箱工艺,可减少费用46.5万元/a优化反应过程及控制战略也是提升三联箱工艺处置效率的有效方法。费锡智等[15]对广东某电厂脱硫废水三联箱工艺进行优化,通过污泥回流实现了废水的稳定 达标排放 DL/T997-2006;新疆某火电厂也采用了相同战略改进三联箱工艺[16]。为进一步提高悬浮物的去除效果,保证后续处置过程的稳定,三联箱可与多介质过滤或微滤(MF等工艺结合。Enoch等[17]将MF与化学沉淀组合,通过提高膜面流速和周期反冲控制膜污染,表示出稳定的悬浮物和重金属去除效果。周卫青等[18]发现化学沉淀-MF组合工艺可以显著增强抗冲击负荷性能、自控性和减少占地,同时满足废水达标。随着脱硫废水深度处置与零排放工艺的发展,三联箱工艺成为有效的预处理工艺,其与MF或超滤(UF组合工艺得到广泛应用。

脱硫废水中大量含硫物质可以促进硫酸盐还原菌(sulphatreductbacteriaSRB生长和生物氧化还原过程,有机物可以作为微生物的生长基质,因此,微生物法可以有效去除脱硫废水中的有机物、硫酸盐、氮和某些重金属。美国EPA 调查结果显示,美国有3%电厂采用生物技术处理脱硫废水(图3[19]。Chao等[20]用结合硫代谢的生物降解-电子转移工艺 Biodegradation-ElectrontransfwithsulfurmetabolintegrprocessBESI处置脱硫废水,通过SRB作用,CODTOC氨氮和总氮的去除率分别为87.99%87.04%30.77%和45.17%陈涛等[21]考察了上流式厌氧污泥床反应器(UA SB脱硫废水处置效果,利用SRB作用,可在高负荷条件下(SO24负荷为6kgm-3d-1有效去除78%COD和82%SO24人工湿地和流化床技术也在脱硫废水处置中得到推广应用,主要是利用植物和催化剂的作用去除某些重金属[22-23]。此外,直接将脱硫废水排放至除灰系统、进行煤场喷洒、或灰渣闭式循环系统排放也是解决脱硫废水的方案之一,利用余热蒸发废水实现零排放而结晶盐作为灰渣处置,但存在突出的腐蚀风险[24-25]。

3零排放工艺的研究与应用进展

脱硫废水零排放是目前热电厂一个重要的研究方向,美国目前已有37%电厂实现了脱硫废水的零排放(图3国也开展了大量的研究,实现了从实验室小试到中试以及规模化应用的推广。针对脱硫废水的水质水量特征,零排放处置工艺主要包括悬浮物去除、重金属去除、浓缩减量和盐结晶固化4个过程,其他污染物包括有机物则在4个过程中被逐步去除。

3.1预处置技术预

处置是保证脱硫废水零排放的根本,主要进行悬浮物去除、pH值调节、废水软化和局部溶解性污染物去除。激进脱硫废水处置技术在升级改造过程中成为主要的预处理技术,其与MF/UF组合是目前预处理工艺的主要选择。生物处置、电解、电渗析等技术也在预处理中得到应用。作为预处理技术,重力沉降和化学沉淀法等激进技术主要用于去除悬浮物。除硬是预处理的重要过程,特别是深度处置过程采用膜技术的情况下,激进化学软化法和离子交换法除硬得到广泛应用。刘海洋等[26]发现,采用NaOH软化脱硫废水提高了混凝效果,原因是形成的MgOH2晶粒促进了混凝剂的卷扫捕集作用。刘亚鹏等[27]考察了CaSO4晶 种 法、FS-66药剂、CaOH2+Na2CO3NaOH+Na2CO34种软化方式的影响,发现NaOH+Na2CO3法的钙镁和全硅去除效果最佳,可以保证后续MF稳定运行。但激进化学软化法无法有效分离Ca和Mg混合堆积物只能作为固废处理。Xia等[28]采用两步沉淀法实现了Ca去除和Mg回收,并基于热力学分析和实验验证方式考察了Na2CO3Na2C2O4NaFNa2SO44种添加剂对Ca选择性沉淀效果,MgOH2质量分数可达99.3%脱硫废水中硫酸盐浓度极高,结垢的重要成分,Yu等[29]采 用石灰与NaA lO2共沉淀方式去除硫酸盐,去除率可达83.94%从4881mg/L降低到784mg/L氯是脱硫废水的一种重要盐成分,水处理领域的难点,电解-电渗析组合技术可通过电极反应氧化Cl形成Cl2同时获得副产物H2和CaOH2可为脱硫废水Cl控制与去除提供一种新思路[30]。

三联箱工艺与MF或UF组合是去除悬浮物和大分子有机物的重要手段,目前零排放形势下最普遍采用的预处理技术。连坤宙等[31]的研究标明,MF处置脱硫废水效果稳定,产水浊度和SDI值分别低于0.2NTU和4.0满足反渗透(RO进水要求。管式微滤膜(TMF由于分离效果好且膜污染较轻,常应用于三联箱废水的二次过滤[31-32]。UF脱硫废水预处置中也得到广泛关注[33-35]。三联箱工艺也和多介质过滤、高密度廓清池等工艺或装置组合去除悬浮物,以 满 足 后 续 深 度 处 理要求[37-38]。

电絮凝结合了电解和混凝的技术特点,具有药剂投加量少、去除效果好、pH使用条件宽等优势,可同时去除悬浮物、总氮、有机物和特定重金属。Liu等[39]基于Fe/C/A l电极,采用电絮凝处置脱硫废水,SS和COD去除率可达99.9%和89%同时FNiHgMnPbCdCu等去除率可达86%98%严刚等[40]优化电絮凝操作条件,可有效去除脱硫废水的浊度、SS并可脱色和去除局部重金属。基于硫循环的微生物处置技术可去除脱硫废水中的有机物和氮。Wei等[20]以整合硫代谢的生物降解-电子转移工艺(BESI处置脱硫废水,利用硫酸盐促进SRB硫代谢反应,CODTOC氨氮和总氮的去除率分别为87.99%87.04%30.77%和45.17%Jiang等[41]将硫酸盐还原、自养反硝化与硝化工艺 SulfatreductautotrophdenitrificationandnitrifintegrSA NI联合,利用脱硫废水中S作为电子供体,COD去除率可达94.00%其 中85.50%由SRB去除,氨氮和硝酸盐氮可以在硝化与反硝化过程中基本完全去除。

3.2重金属去除技术

重金属是脱硫废水达标排放的重要限制指标,也影响最终结晶盐的品质。激进化学沉淀法利用羟基金属盐和硫化汞沉淀原理,通过投加碱和硫化物去除重金属,基本可满足脱硫废水排放规范要求(表1但传统工艺的处置效果不稳定、对低浓度重金属的处置效果差,导致出水仍残留少量的重金属,甚至经常出现超标的现象。

吸附是重金属去除的主要技术之一[42],活性炭、改性活性炭、石油焦、沸石、飞灰、介孔硅、金属氧化物和羟基金属资料等吸附剂都应用于脱硫废水的重金属去除[43]。Czarna等[44]利用飞灰合成沸石去除脱硫废水中的Hg对实际脱硫废水的Hg吸附效率高于99%Guan等[45]发现,水溶性壳聚糖通过吸附与共沉淀方式去除脱硫废水中的Mn和ZnpH值为7时吸附容量可达0.85mmol/g

电絮凝可以去除脱硫废水中的重金属,电极处电解产生的羟基与重金属形成沉淀,同时电极电解形成的羟基资料(如羟基铁或羟基铝)可吸附一定的重金属[39-4046]。0价铁具有还原能力,活性强、寿命短,可与其他吸附、催化等资料复合使用,一种有效的重金属处置技术[47-48]。Huang等[49-50]将0价 铁、磁铁矿及二价铁复合,开发了铁氧微晶技术处理脱硫废水,通过4级复合0价铁反应器可同步去除SeHg硝酸盐。此基础上,该团队开展了连续5个月的脱硫废水处置中试研究,产水中Se和Hg浓度低于10μg/L和10ng/L其他重金属浓度如AsCdCrNiPb和Zn等都低于10-9水平[51]。

微生物处置法可去除脱硫废水中重金属,一方面利用生物吸附去除重金属[52],另一方面利用微生物氧化还原作用实现生物促进共沉淀。Zhang等[53]采用UA SB结合SRB进行脱硫废水的亚硫酸盐还原,可同时去除重金属和亚硫酸盐,但细胞吸附和有机物螯合作用对Hg和Pb去除率仅为20.0%和1.8%Hg和Pb去除机理主要为硫酸盐还原菌代谢生成S2-而形成化学沉淀。

共沉淀法是目前工程应用最为广泛的重金属去除技术。而针对微量重金属,吸附、电絮凝、0价铁等技术得到大量的研究,电解、有机吸附共沉淀、乳化液膜等技术也逐渐得到关注[5254]。膜分离技术是一种非常有效的重金属污染控制手段,其在脱硫废水中的应用将在3.3节具体介绍。

总之,脱硫废水中重金属去除的重要研究方向在于新型高效吸附、氧化还原、电极、催化氧化及膜材料的制备;重金属去除机理的探讨;高盐高有机物条件下重金属去除工艺的开发与应用等。

产品分类

Online Services

 Services  after-sales